Name: \qquad
Block: \qquad
Guided notes + Activity 2a. 4
Graphs and linear relationships

1. Walk approximately five minutes around the top floor at a constant rate, recording your position every minute.

Time	0					
Position	0					

2. Graph your data for up to ten minutes. This will take a few steps, so listen to your teacher and write these notes down first:
a. Choose the independent and dependent variable.

The independent variable is \qquad so it goes on the \qquad .

The dependent variable is \qquad so it goes on the \qquad . I chose these because \qquad
\qquad
\qquad
b. Choose your scale to match the available paper. In this case, we need to leave room for \qquad . Label your axes.
c. Graph each point as a coordinate pair. Include (0,0), so you will have six points on your graph.
d. Draw a line of best fit through the six points. A line of best fit:

3. Interpolate: \qquad

Interpolate to find your distance at time $t=2.5 \mathrm{~min} d=$ \qquad
Find the time it took you to walk three laps: \qquad
4. Extrapolate: \qquad

Extrapolate to find your distance at $\mathrm{t}=6 \mathrm{~min}$. $\mathrm{d}=$ \qquad
Predict your distance after 10 min . d = \qquad
How far do you think you could extrapolate this graph? Would it be valid after half an hour? How about after three hours, or twelve? Why?
\qquad
\qquad
\qquad

