POD \#11

POD \#12

Find the LCM of:
Find the GCF of:
a. 2,6
a. 8,10
b. 7,10
b. 100,15
c. 14,35
c. 32,64
d. 8,13
d. 7,18

POD \#13

Find the GCF:
a. $5 \mathrm{a}, 10 \mathrm{ab}$
b. $4 x^{2} y, 12 x y^{2}$
c. $6 m^{4} n^{5}, 7 m^{3} n^{2}$
d. $-10 t^{8},-5 t^{5} \mathrm{c}$
*e. $(1 / 4) x^{2},(1 / 4) x y$

POD \#14

These statements are all false. Give a counterexample.
a. The square root of a number is always smaller than the number.
b. A right triangle can never be isosceles.
c. Any whole number greater than one to any power is greater than one.
d. Two numbers cannot share more than one factor.

POD \#15

These statements are all false. Give a counterexample.
POD \#16
a. The sum of the interior measures of a quadrilateral is 360 degrees.
b. If you divide both sides of an equation by the same number, they are still equal.
c. The factors of a number are always the same as or smaller than the number itself.

Would you rather...

Imagine we have a cup filled with some unknown ratio of
POD \#17
Use addition to balance these numbers so both sides are orange and purple marbles. We select marbles one at a equal $-56,38,24,32,18,19,40,6,16,22$.

What is the primary reason for replacing the marble after each selection?
A To make sure each selection is independent
B To make sure each selection is not independent
C To try and confuse the person doing the selections

Make 126. Use all of the numbers ($200,5,4,2,6$) to arrive at an answer of 126 . You can use addition, subtraction, multiplication or division, but each number may only be

POD \#19 used once.

Use the digits 0-9, each one time only, to create a true
POD number sentence using any operations you choose.

Put your answer on the board! Let's see how creative you can get ©

