POD \#21

Esker escapes from her yard and runs 200 m east. She then pivots and runs 400 m west. She makes a hard right turn and continues for 300 m until she stops to pee on the mailboxes. What is her displacement?

Don't forget to make a vector drawing as well as do the calculations!
*oblem2 (30 points)
*oblem2 (30 points)
5 kilogram ball is shot directly right at 20 meters per second
5 kilogram ball is shot directly right at 20 meters per second
rom a height of }10\mathrm{ meters. The ball loses 1 joule whenever i
rom a height of }10\mathrm{ meters. The ball loses 1 joule whenever i
ouches Earth. Assume no air resistance. When does the ball
ouches Earth. Assume no air resistance. When does the ball
op bouncing?
op bouncing?
If there is no air, the surface of the Earth
If there is no air, the surface of the Earth
will be littered with'the bodies of the dead.
will be littered with'the bodies of the dead.
So, the ball will come to a halt in the first
So, the ball will come to a halt in the first
sill-warm husk of a snutfed-out life
sill-warm husk of a snutfed-out life
still-warm h
still-warm h
Thus, the equation is simply
Thus, the equation is simply
y=\mp@subsup{y}{0}{}+vtt+\frac{1}{2}a\mp@subsup{t}{}{2}
y=\mp@subsup{y}{0}{}+vtt+\frac{1}{2}a\mp@subsup{t}{}{2}
0:10+0+\frac{1}{2}(9.8)\mp@subsup{t}{}{2}
0:10+0+\frac{1}{2}(9.8)\mp@subsup{t}{}{2}
t=1.4s
t=1.4s
You monster.
You monster.

26

POD \#22

A car leaves the Los Angeles area and arrives at Las Vegas 5.0 hours later. If the displacement of the car from start to finish is 400 km northeast, which statement must be true?
a. The car traveled a distance of 400 km .
b. The car had an average speed of $80 \mathrm{~km} / \mathrm{hr}$.
c. The car had an average velocity of $80 \mathrm{~km} / \mathrm{hr}$, northeast.
d. The car had the same velocity during the 5 hour period.
e. The car had the same speed during the 5 hour period.

POD \#23

A rocket accelerates upwards with an average velocity of $100 \mathrm{~m} / \mathrm{s}$ for a time period of 10.0 seconds has passed. What is the displacement of the rocket during this time?
a. 2000 m
b. 2000 m , upwards
c. 1000 m
d. 1000 m , upwards
e. The problem can't be solved without more information

28

POD \#25

A car begins accelerating from rest, and reaches a final velocity of $30.0 \mathrm{~m} / \mathrm{s}$ in the positive x direction 5.0 seconds later. The average velocity of the car was
a. $+30 \mathrm{~m} / \mathrm{s}$
b. $-30 \mathrm{~m} / \mathrm{s}$
c. $\quad+6.0 \mathrm{~m} / \mathrm{s}$
d. $-6.0 \mathrm{~m} / \mathrm{s}$
e. $+15 \mathrm{~m} / \mathrm{s}$

29

POD \#26

An object is dropped from the top of a high cliff, and it free-falls with negligible air friction. The average velocity of the object during its fall was $32 \mathrm{~m} / \mathrm{s}$ downwards. What was the final velocity of the object just before it hits the ground?
a. $0 \mathrm{~m} / \mathrm{s}$
b. $\quad 32 \mathrm{~m} / \mathrm{s}$
c. $\quad 9.8 \mathrm{~m} / \mathrm{s}$
d. $64 \mathrm{~m} / \mathrm{s}$
e. $\quad 9.8 \mathrm{~m} / \mathrm{s}^{2}$

POD \#27
A marble rolling across a carpet in the $-x$ direction (to the left), slows from an initial speed of $55 \mathrm{~cm} / \mathrm{s}$ to a final speed of $11 \mathrm{~cm} / \mathrm{s}, 4.0$ seconds later? What is the acceleration of the marble during this time period?
a. $11 \mathrm{~cm} / \mathrm{s}$ to the left
b. $11 \mathrm{~cm} / \mathrm{s}$ to the right
c. $11 \mathrm{~cm} / \mathrm{s}^{2}$ to the left
d. $11 \mathrm{~cm} / \mathrm{s}^{2}$ to the right
e. none of these

POD \#28

An astronaut standing on the moon holds a large, heavy brick and a small, light fock, and then releases them from the same height at the same time. Which object reaches the moon's surface first?
a. The brick, because it's heavier and accelerates faster..
b. The brick, because it has a greater force of gravity acting on it.
c. The rock, because there is less air friction acting on it.
d. They reach the surface at the same time because their accelerations are equal.
e. Both the rock and brick will just float there when released-there is no gravity on the moon.

32

POD \#29

A rock is thrown into the air vertically by a student standing at the edge of the top of a tall building. If the rock has an initial velocity of $20 \mathrm{~m} / \mathrm{s}$, where is the ball located after 5.0 seconds have passed?
a. 10 meters above the top of the building
b. 25 meters above the top of the building
c. 5 meters below the top of the building
d. 25 meters below the top of the building
e. 225 meters below the top of the building

34

